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ON SAINT-VENANT TYPE CONDITIONS IN THE THEORY OF PIEZOELASTIC SHELLS* 

N.N. ROGACHEVA 

Saint-Venant type conditions extended to piezoelasticity are formulated. 
It is shown that one electrical condition is added to the well- 
known Saint-Venant mechanical conditions for piezoceramic shells with non- 
electrodized face surfaces. The Saint-Venant conditions accepted in 
elasticity theory remain true for shells with electrodized face surfaces. 

The complete state of stress and strain of a non-electric elastic shell is comprised of 
a deeply penetrating internal state of stress and strain described by the equations of shell 
theory, and of boundary layers localized near the edges. In formulating the boundary condi- 
tions for the internal state of stress and strain and the boundary layers, an important part 
is played by the Saint-Venant principle /l/, which is as follows as applied to elastic shells: 
if stresses are given arbitrarily on the edge of a shell, then non-selfequilibrated edge 
effects will generate a deeply penetrating solution and should be taken into account when 
analysing the state of stress and strain, while the part of the edge load not selfequilibrated 
over the thickness will cause a stress and strain state that will damp rapidly at the edge 
and is taken into account in analysing the boundary layer. 

In the case of piezoelastic shells, both electrical and mechanical quantities occur in 
the complete system of equations. Consequently, the question arises of what conditions of 
Saint-Venant type should the mechanical and electrical edge load satisfy. To answer this 
question, following /2/, we find a solution of the boundary layer problems and we clarify, in 
passing, what requirements the edge load should be subjected to in order for the boundary 
layer solution to have the necessary damping. That part of the load which does not satisfy 
these conditions should be taken into account in analysing the internal electroelastic state 
of the shell. 

1. We select a systemoftri-orthogonal coordinates as follows: curvilinear coordinates 
al and &,-lines of curvature of the middle surface, and y-lines orthogonal to them. 

*'rlk; .natem.Mekhan ..48,2,302-306,1984 
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The piezoceramic'shell equations and their corresponding boundary-layer equations depend 
substantially on the directions of preliminary piezoceramic polaxization. To be specific, we 
consider the boundary-layer at the edge al = aI0 in a piezoceramic shell with preliminary 
polarization along the a,-lines. As is customary in the asymptotic method, we stretch the 
coordinates in the direction of greatest variabiiity of the quantities (in directions orthogonai 
to the edge and in thickness) 

AI (ai - a3 = hE, y = h6 ($1 

The notation used here is identical with that used in /3/. 
As is shown in 131, the boundary-layer analysis in the initial approximation reduces to 

solving plane and antiplane problems for a piezoceramic half-strip with homogeneous conditions 
on the face surfaces. 

We assume that an arbitrary mechanical and electrical load 

is given on the edge 5 =O of the half-strip. 
Homogeneous conditions 

S,, = 0, D, - 0, &a = 0, s,, = 0 

are given on the non-electrodized face surfaces of the half-strip t = 1 and 5 = -1, 
Here SIj are stresses, cp is the electrical potential, D1 is the electric induction vector 

component normal to the edge surface, andDais the electric induction vector component normal 
to the face surface. 

Apart from physical constants, the equations of a plane piezoelastic boundary-layer at 
the edge aI = alo agree with the equations of a plane boundary-layer in elasticity theory: 
consequently, the usual Saint-Venant damping conditions /2/ hold for a plane piezoelastic 
boundary-layer 

Y &1@10)dy=0, ~Sw(alo)dy=O. +ShyS~(alo)dy=O is) 
-h -h -h 

Let us obtain the damping conditions for an antiplane boundary-layer. The equations of 
the antiplane piezoelastic problem have the following form in the dimensionless coordinates 

This system can be reduced to two equations in the unknowns v and cp 

k’@-+=(i- kJ)da$&, $$ + $$=O, 

k’ = srs’/s,,” 

(7) 

When solving system (7) we satisfy the first two conditions of (4) on the face surfaces 
of the half-strip and conditions (3) on the edge , where the second condition of (3) must be 

satisfied on the edge by electrodes, and the third condition of (3) on the non-electrodized 

edge. 
We perform a Laplace integral transform in the variable E in system CT), whereupon we 

obtain 

(8) 

In the new notation, the conditions on the non-electrodized face surfaces 6 = 1, f=--2 
are wxitten thus: 

dU/dc = 0, dcD/dF, = 0 (9) 

We integrate (8). Their solutions have the following form: 

CD = Cl coopt -t- C, sin pl; + al (p. 5) cosp5 + bl (p, 5) sin pC (10) 
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u = c, cos kpf; + c, sin kp5 - dl, {ICI -I” a1 (p, Q] co9 PI, + 
Es + bl b, Ql sin pii} + a, (P, t) cos W -I- bs (p, C.) sinkpt 

a1 (P, 5) = - $ s &sinpSd&, h(p,t!=+ Q~cosKdS i 
t tj 

We determine the constants &‘I, . . . . c, from conditions (9). 
We assume that the functions (3) given on the edge axe even functions of 5. Then if we 

set c,, = -1, c, = 0, we obtain 

(II) 

We substitute (11) into (lo), then we find the residues of the functions U and @ and 
applying the inversion theorem obtain the final formulas for u and cp. For the formulas for u 
and cp not to contain terms that grow according to a power law, we equate the residues to zero 
at the points p = 0, whereupon we obtain Stain-Venant type damping conditions 

s" &z(alo)~y=oO, &(alL++O, -y&(am)ay=o w 
-h -h -h 

The second of conditions (12) should be satisfied on the electrodized edge, and the third 
on the non-electrodized edge. 

Let the functions (3) given on the edge be odd functions of 5. Then by setting co =O, 

61 = --1, we obtain 
c, = c, = 0, bl GJ, 1) = b, (p, 1) = 0 

c 8 = 61 (P* 1) sin P 
, G- %(p, 1)sinkp 

cosp 00s kp 

It is seen from these last formulas that the functions U and Q, have residues only at 
points where the equalities cos Pn = 0, cos kp, =O are satisfied. The roots of these equa- 
tions are the numbers pn$ -pn,p,,,, -pm, where 

p,,=+-(2n-4, p~=-$(2m-i} (n,m=i,2,3...) 

The desired functions have no residues at the points p =O , consequently, the solution 
of the antiplane boundary-layer will be damped for any edge load (3) odd in 6. 

Using the inversion theorem, we find 

The residues at the points p,,and p,,, yeild solutions that increase with distance from 
the edge, We hence equate them to zero fthe solution obtained is sufficiently arbitrary to 
satisfy these conditions), and we consequently obtain 

Using (13) for 9, and v we can write the exponentially damped solution 

q = *tl res_pn@e-P*~E, V=n~lres_p,Ue-Pn~ + 5 ras+,Ue-*mE 
?I%==, 

Here 
reLP,Q = al (-p,, 1) sin p,g 

res-PRU = i&z, (--pm. 1) sin kpn6 

(13) 

(14) 
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If the value 
unknown functions 
final formulas 

res%U = -dl,al (-p,, 1) sin pn< 

of the electric potential cp is given on the edge, then by eliminating the 
(acp/%)~=, and (u + &cP)EXo in (14), taking (13) into account, we obtain the 

cp= 5 0) sin p,6emPnE, 
“4 

v = - dlacp + 5 b”“’ sin p,,,&-“m= 
m-1 

If the electric induction vector component normal to the edge surface D,is given on the 
edge, then the formula for cc") should be replaced by 

1 

cm = - 2 
7 s P&l o 

Edlsfs (5) - 11% (C)l sin PA d5 

Thus, for piezoceramic shells with non-electrodized face surfaces the Saint-Venant 
generalized conditions for stresses given at the edge are conserved in the same form as 
elasticity theory (non-selfequilibrated edge effects generate a solution that damps exponent- 
ially at the edge), while for electrical quantities given at the edge the following damping 
conditions hold: 

i;h 
\ v@ddy=O 

in 

--h 

on the electrodized edge and 
+h 

-h 
on the non-electrodized edge. 

These conditions were obtained on the edge aI = alo for a shell pre-polarized along the 
as-line. It can be shown in an analogous manner that the damping conditions obtained hold 

even on the edge c+ =~o and on the edge of a shell with thickness polarization. Solutions 
of the corresponding boundary layer problems are obtained but are not presented here because 
of the awkwardness of the computations since the governing equation of the plane electro- 
elastic problem is of sixth order in these cases (fourth order in elasticity) and the algebraic 
aspect of the problem becomes much more complicated. 

If the shell face surfaces are electrodized, then the second condition in (4) should be 
replaced by the condition cp = 0 for y = h, y = -h and by using solution (10) it can be shown 
that the damping condtions which should be imposed on the edge load on this case will agree 
completely with the Saint-Venant conditions in elasticity theory. Any edge electrical load, 
either selfequilibrated or not selfequilibrated will cause an exponentially damped electro- 
elastic state with distance from the edge. This result agrees completelywiththe fact that 
the equations of the theory of piezoceramic shells with electrodized face surfaces agree with 
the equations for non-electric shells apart from constant coefficients and have no arbitrari- 
ness to satisfy the electrical conditions on the shell edges /3, 4/. 
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